Extended Glivenko–Cantelli Theorem in Nonparametric Regression
نویسندگان
چکیده
منابع مشابه
A New Nonparametric Regression for Longitudinal Data
In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...
متن کاملNonparametric Regression
is called the regression function (of Y on X). The basic goal in nonparametric regression is to construct an estimate f̂ of f0, from i.i.d. samples (x1, y1), . . . (xn, yn) ∈ R × R that have the same joint distribution as (X,Y ). We often call X the input, predictor, feature, etc., and Y the output, outcome, response, etc. Importantly, in nonparametric regression we do not assume a certain param...
متن کاملNonparametric Regression in Exponential Families
Most results in nonparametric regression theory are developed only for the case of additive noise. In such a setting many smoothing techniques including wavelet thresholding methods have been developed and shown to be highly adaptive. In this paper we consider nonparametric regression in exponential families which include, for example, Poisson regression, binomial regression, and gamma regressi...
متن کاملNonparametric Regression in Environmental Statistics
This article provides an introduction to the major types of nonparametric regression techniques, including kernel, spline and orthogonal projection methods. Practical aspects of the methods and their applicability in environmental statistics are emphasized through examples and discussion. Topics covered include bandwidth selection, non-parametric regression in multiple dimensions, and methods f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Statistics - Theory and Methods
سال: 2014
ISSN: 0361-0926,1532-415X
DOI: 10.1080/03610926.2012.700377